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Abstract—In this paper, we present an example-based system for terrain synthesis. In our approach, patches from a sample terrain

(represented by a height field) are used to generate a new terrain. The synthesis is guided by a user-sketched feature map that

specifies where terrain features occur in the resulting synthetic terrain. Our system emphasizes large-scale curvilinear features (ridges

and valleys) because such features are the dominant visual elements in most terrains. Both the example height field and user’s sketch

map are analyzed using a technique from the field of geomorphology. The system finds patches from the example data that match the

features found in the user’s sketch. Patches are joined together using graph cuts and Poisson editing. The order in which patches are

placed in the synthesized terrain is determined by breadth-first traversal of a feature tree and this generates improved results over

standard raster-scan placement orders. Our technique supports user-controlled terrain synthesis in a wide variety of styles, based

upon the visual richness of real-world terrain data.

Index Terms—Terrain synthesis, Digital Elevation Models, terrain analysis, texture synthesis.
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1 INTRODUCTION

THERE are numerous applications that make use of
synthetic terrain and, very often, the terrain is the

dominant visual element in the scene. Such applications
include landscape design, flight simulators, emergency
response training, battleground simulations, feature film
special effects, and computer games. Over the years,
graphics researchers have made considerable progress
toward developing efficient methods for generating a
synthetic terrain. Previous terrain synthesis work has
focused on using fractal models and physical erosion
models to create a realistic-appearing terrain.

With the rapid growth of computing power and
development in terrain visualization techniques, the de-
mand for more realistic terrain has increased considerably.

In addition, users of terrain modeling applications want
more control over the creation of new terrain. However,
current terrain synthesis methods have several limitations.
First, these methods provide users with little or no control
over the placement of desired terrain features. Second,
using the control parameters in these methods, it is difficult
to generate terrain with a desired style, such as a terrain
with the geological features of the Grand Canyon.

Figs. 2a and 2b show examples of fractal and erosion

terrains produced by some popular commercial software,
displayed as intensity-coded elevation maps. The styles of
these terrains are quite unlike the natural terrain illustrated
in Figs. 2c and 2d.

We present a novel example-based terrain synthesis
method that addresses the need for intuitive user control
over both terrain feature placement and terrain style. Our
method draws upon the techniques of patch matching and

patch placement from example-based texture synthesis. In
our approach, the user supplies a sketched terrain feature
map (called the sketch map) and real terrain data (called the
example height field), which contain the desired terrain styles.
Example height fields are in the form of Digital Elevation
Models (DEMs), which are available online from the US
Geological Survey. Our system then automatically gener-
ates a new height field that preserves the visual style of the
real terrain data and meets the feature constraints of the
sketch map. Synthetic results from our approach are shown
in Fig. 1.

The sketch map provides the user with an easy and
intuitive way to control the synthesis process. Each map
specifies the locations of important terrain features such as
the bifurcation point at the center of the image in Fig. 10a.
Notice that these sketches are quite coarse. In fact, the width
of the brush and the pixel intensities are of little importance,
as long as they follow the simple principle that darker
pixels indicate lower elevations and brighter pixels indicate
higher elevations. Our goal in this work is the generation of
visually compelling terrain. We do not address the separate
issue of whether a synthesized terrain is geologically
accurate.

The starting point for our algorithm is the identification
of important terrain features in both the sketch map and the
example height field. Our system concentrates on large
curvilinear features, such as rivers, valleys, and mountain
ridges, since these are usually the most important visual
elements in a large-scale terrain (as illustrated in Figs. 2c
and 2d). Because the underlying terrain structures in the
sketch map and the ones in the example height field are
often very different, matches over large spatial scales are
unlikely to be correct. However, we observe that, at small
scales, common terrain features such as a bifurcation or a
straight section of a valley can be found in both maps.
Hence, our algorithm breaks the sketch map into small
patch regions and searches through the example height
field for structural feature matches.

The extraction of structural information from the sketch
map is straightforward due to its simplicity. On the other
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hand, the extraction of high-level structural information

such as ridges and valleys from a real terrain height field

can be difficult. Here, we draw upon work in the field of
geomorphology. Specifically, we use the Profile recognition

and Polygon breaking Algorithm (PPA) developed by

Chang et al. [1] to extract structural information such as
ridge and valley axes from a height field.

Once the important structural terrain features have been

extracted, our algorithm proceeds in the following stages:

First, curvilinear terrain features are used as constraints for
the matching and alignment of patch regions in the sketch

map and the example height field. Second, these features

are used as constraints for matching along the overlapping
boundaries between neighboring patch regions. A patch is

selected based on a weighted combination of scores that

assess the goodness-of-fit between a patch and its neighbors
and the amount of deformation of the patch that is required.

The order of patch placement is determined by a breadth-

first traversal of a feature tree that is constructed from the
user sketch. Each patch is placed into the output map using

a combination of graph-cut seam finding and Poisson seam

removal to minimize visual discontinuities.
This paper makes the following contributions:

. a method for sketch-based specification of synthe-
sized terrain features, giving the user intuitive
control over the synthesis result,

. a feature-based approach to matching and place-
ment of large curvilinear terrain features, which
makes it possible to efficiently search large terrain
databases and preserve the important visual ele-
ments in the synthesis process,

. a tree-ordered patch placement algorithm as an
alternative to the standard raster-scan ordering,
which results in a more faithful reproduction of
terrain structure in matching the user input, and

. the ability to synthesize transitions between different
terrain types and incorporate multiple DEMs into a
single synthesized output.

We have drawn significant inspiration for our work from
previous texture synthesis methods, which we review in the
following section.

2 RELATED WORK

There are two main approaches to generating a synthetic
terrain: fractal landscape modeling and physical erosion
simulation. Fractal landscape modeling dates back to the
pioneering work of Mandelbrot [2]. Since then, a variety of
stochastic subdivision techniques have been introduced.
Fournier et al. [3] introduced the random midpoint
displacement technique to create fractal surfaces. Voss [4]
added successive random displacement to fractional Brow-
nian surfaces. Miller [5] proposed a square-square subdivi-
sion scheme for generating a fractal terrain and a parallel
processing algorithm for rendering height fields. Lewis [6]
proposed a generalized stochastic subdivision. Szeliski and
Terzopoulos [7] addressed the problem of user control by
combining deterministic splines and stochastic fractals into
constrained fractals. Recent fractal-based approaches are
reviewed in [8] and [9].

Physical erosion simulation is an alternative approach to
synthesizing terrain details based on models of landscape
formulation and stream erosion from the geomorphology
community. It is often used as a refinement step after a
rough height field is generated. Kelley et al. [10] first
introduced a method to approximate a natural terrain by
simulating the erosion of stream networks. Later, Musgrave
et al. [11] then combined the fractal modeling and erosion
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Fig. 1. Synthesized terrains using the DEM of the Flathead National

Forest Mountain Range (top image) and the DEM of the Grand Canyon

(bottom image).

Fig. 2. Examples of terrains generated by current methods. (a) Fractal
terrain (ridged multi-Perlin) generated by Terragen at 1; 025� 1; 025
resolution. (b) Erosion terrain generated by Bryce 5 at 1; 024� 1; 024
resolution. In contrast are two real elevation maps: (c) 1/3 arc second
(10 m) DEM of the Flathead National Forest mountain range, Montana,
and (d) 1/3 arc second (10 m) DEM of Mount Vernon, Kentucky. (DEMs
courtesy of the US Geological Survey.)



simulation approaches into a single framework. Recent
physical erosion techniques, exemplified by [12], [13], [14],
[15], and [16], have focused on improving both the physical
modeling aspect and computational efficiency. With appro-
priately tuned parameters, these techniques can generate a
realistic-appearing terrain.

Both fractal and physical erosion techniques add terrain
details through procedural refinement, which often involves
nonintuitive parameter tuning. Recently, Brosz et al. [17]
attempted to extract high-resolution terrain details from
existing DEM data and applied it to a lower resolution terrain
through multiresolution analysis. In practice, their method
requires both the source and target terrain to be fairly detailed
and does not grant the user freedom to create an arbitrary
terrain.

To provide the user with more intuitive control over the
synthesized terrain, image-based alternatives were proposed
by Lewis [18] and Perlin and Velho [19]. In these works,
terrain was viewed as a type of texture and user control was
provided through direct manipulation of the texture. The
result was then interpreted as a height field to create a variety
of terrain types. However, because it is difficult for a user to
draw a realistic natural height field by hand, these methods
typically suffer from a lack of realistic detail.

2.1 Commercial Software

We are not aware of any existing commercial software for
terrain synthesis that employs an approach that is similar to
ours. We briefly review four major commercial systems,
Mojoworld, Terragen, World Machine, and Bryce, which
are representative of the current state of the art. Mojoworld
and Terragen both have fractal synthesis engines that
generate terrain procedurally. The resulting models are
very compact because they are generated on the fly. World
Machine, on the other hand, offers geological erosion on top
of its procedural shape and noise generator to synthesize a
realistic-appealing terrain. In all of these systems, control
over the synthesis result is obtained by changing the global
parameters in the generation process. It is, however,
difficult to set these parameters so as to generate distinctive
realistic terrain types. Moreover, these systems do not
support the user-specified placement of major terrain
features. Bryce, in addition to having both fractal and
erosion synthesis engines, also accepts as input a direct
specification of the height field by the user using a painting
approach (essentially the method in [18] with the addition
of fractal noise). Figs. 2c and 2d are example terrains
generated by such commercial systems. None of these
products, however, make it possible to synthesize terrain in
a specific style such as the style of the Grand Canyon.

2.2 Texture Synthesis

Image-based texture synthesis is the process of creating an
arbitrarily large patch of texture by drawing pixels from a
given example image. During the past few decades, a
steady improvement in the quality of synthesized textures,
both 2D and volumetric, has been achieved through an
evolution from pixel-based methods [20] to nonparametric
neighborhood-based methods [21], [22], [23]. The most
recent patch-based techniques, exemplified by [24], [25],
[26], [27], [28], [29], [30], and [31], have two common stages:

1) search in a sample texture for neighborhoods most
similar to a context region and 2) merge a patch or a pixel
with the (partially) synthesized output texture. Dynamic
programming [24] and graph cuts [26] have been used to
optimize the patch merging stage. We employ a related
search-and-merge strategy that addresses the unique
characteristics of terrain data.

Recently, Zhang et al. [32] introduced feature-based
warping and blending techniques to synthesize progressively
variant texture on arbitrary surfaces. In their work, the feature
texton masks were manually extracted. Wu and Yu [27] use
edges extracted from the input texture as high-level features
to guide patch-based texture synthesis. We build on this
earlier work in two ways. First, we employ curvilinear
features to support the user sketching of the desired terrain
features and efficient search for matching patches in large
terrain data sets. Second, we introduce a feature analysis
technique that can reliably extract global terrain character-
istics such as ridges and valleys from large DEMs in a wide
range of styles. We demonstrate that standard edge-finding
methods are inappropriate for this task.

The image analogies framework introduced by Hertz-
mann et al. [25] can be used to synthesize terrain images
through a texture-by-numbers approach. This work does
not directly synthesize novel terrain height fields. Its
application to height-field synthesis is hampered by the
difficulty of guaranteeing that the local-neighborhood
matching approach would preserve the extended structures
such as ridges and valleys that characterize terrain style.
The GPU-based texture synthesis method presented in [30]
includes drag-and-drop features and synthesis magnifica-
tion. These techniques were used to relocate mountains on a
terrain height map. In contrast to this work, our focus is to
automatically generate a complete terrain image in a
particular style by matching extended terrain features with
a desired user sketch. We therefore support fully automatic
feature extraction and matching.

Although our example-based approach to terrain synth-
esis is inspired by the recent success of patch-based
methods, terrain synthesis is not simply texture synthesis
on height fields. The terrain generation problem can be
distinguished from conventional texture synthesis in three
main ways. First, a wide variety of terrain types can be
characterized by a combination of global features (such as
ridges and valleys), which can be reliably extracted from
input terrain maps. In contrast, no such easily identifiable
global features exist for general image textures. Second,
terrain synthesis must be globally controllable in order to be
useful for a wide range of applications and large terrain
data sets (often a gigapixel or more) must be searched in
order to meet the users’ constraints. This stands in contrast
to the canonical texture synthesis problem of “growing” a
small input patch of texture into a larger output image with
the same local intensity structure. We demonstrate that
feature-based terrain matching can address both of these
concerns. Third, many recent cut-and-merge techniques for
texture synthesis exploit the fact that image textures contain
many natural boundaries that provide good seams along
which to merge texture elements. In contrast, there are no
natural seams in terrain data. Moreover, any mismatch
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between the height fields in two adjacent patches is
immediately visible. The use of blurring to remove height
differences results in highly visible artifacts. We show how
to combine recent graph-cut and Poisson seam removal
techniques to address the problem of merging terrain
patches.

3 FEATURE EXTRACTION

In this section, we describe our method for extracting
terrain features from the example height field and from the
user’s sketch map. We use the term terrain features to mean
large-scale long curvilinear features such as a river, a valley,
or a mountain ridge. Such terrain features characterize the
overall layout of the terrain. Fig. 3a shows an example
height field, consisting of a portion of the Grand Canyon,
which is depicted as a shaded relief map. This example
illustrates both the existence of large scale curvilinear
structures (the main river bed), as well as a rich array of
secondary structures (the side canyons and other features).
Our goal is to match the primary structures to a desired
sketch shape while preserving the rich detail that is present
in this data.

It may seem that terrain features could be identified
through edge detection. Closer scrutiny, however, reveals
several problems in applying edge detection to complex
terrain data. First, terrain features are characterized by the
local extrema of the height field, whereas edge detection
methods are based on the locally maximal derivatives of the
image. As a consequence, the application of edge detection
to terrain data results in spurious features due to local
height variations, as shown in the upper right corner of the
image in Fig. 3b.1 In addition, terrain data has characteristic
branching structures that are not always handled correctly
by standard edge detection algorithms (for example, in the
lower right corner of the image in Fig. 3b).

We draw upon work in the geomorphology literature to
identify large-scale terrain features. In particular, we have
adapted the PPA, developed by Chang et al. [1], to our task.
We briefly summarize the method in this section and refer
the reader to their paper for additional details.

PPA can extract either ridges or valleys. Here, we will only
describe ridge finding, with the necessary modification to
finding valleys being understood. First, each grid point (pixel
in the height field) is visited to determine if it is a candidate for

being on a ridge. The grid points in eight outward paths are
examined (the yellow points in Fig. 4a), and the current point
is marked as a candidate if the height dips below the central
point by more than a threshold2 along any of these paths. All
such candidates are then connected by a segment to all other
adjacent candidates (the red circles in Fig. 4b). When one
segment crosses another, the lower elevation segment is
cancelled (shown as dotted segments in Fig. 4b). The
polygons are then broken into dendritic line patterns by
repeatedly eliminating the least important segment (the
remaining segment with the lowest height, shown as dotted
segments in Fig. 4c) for each closed polygon. This process
terminates when there are no more closed polygons. After the
polygon breaking process, shorter branches are eliminated
(dotted segments in the Fig. 4d).

The output of PPA for a sample terrain is shown in Fig. 3c.
Notice that the valley axes coincide with human perception of
the important curvilinear features in the height field. Our
system uses PPA to identify features both in the example
height field and in the user’s sketch map. The gray-scale
values in the sketch map are treated as elevation values. The
output of PPA is a collection of line segments that are
connected and that form long chains along ridges or valleys.
These chains of segments are the basis for feature matching
between the user’s sketch and regions in the given height
field. Once the chains of segments have been identified, they
are analyzed to form two classes of features: isolated features
and curvilinear (path) features. Isolated features are branch
points and endpoints. Curvilinear features are long chains of
segments that connect isolated features. The feature matching
process described next makes use of these two feature
categories.

A key property of the PPA is that the extracted features
form a tree (a forest in general) since all closed polygons are
broken in the analysis process. This property allows us to
use tree traversal to order the placement of patches during
synthesis, as described next.

4 FEATURE-BASED PATCH MATCHING AND

PLACEMENT

Our synthesis process creates a new height field by
extracting patches from the example height field and
placing them in an output height field in a manner that is
dictated by the user’s sketch. Typical patch sizes are 80 �
80 pixels (this is determined by the spatial scale of the
example terrain data and the detail of the result desired by
the user). Patch selection and placement is performed in
two stages: feature patch matching and placement and
nonfeature patch placement.
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1. Searching for edges at multiple scales cannot easily solve this problem
as perceptually important terrain structures are not guaranteed to persist
over scale.

2. We typically set the threshold to one-half of the elevation range of the
input height field.

Fig. 3. Comparison of feature extraction methods. (a) Grand Canyon

height field displayed as a shaded relief map. (b) Features extracted by

the Canny edge detector. (c) Features extracted by PPA.

Fig. 4. Chang’s PPA. (a) Profile recognition. (b) Target connection.

(c) Polygon breaking. (d) Branch reduction.



The first stage, feature matching and placement, locates

both isolated features, branch points and endpoints, and

nonisolated features, curvilinear features (paths) in the

sketch map. See Fig. 5 for examples of each of these feature

types. Patches are found that match these features and these

patches are placed in the output height field.
If we treat the isolated features extracted by the PPA as

nodes, and curvilinear features (paths) as edges of a graph,

then this graph is guaranteed to be acyclic. Our algorithm

follows a breadth-first search order to match and align the

patch regions. It first picks an isolated feature (usually a

branch if it is present) as the root, it then traverses down

through the graph one edge at a time until every edge

reachable from the root is covered. This process is

illustrated in Figs. 6c, 6d, and 6e. Note that this is a

departure from traditional texture synthesis methods that

follow a rigid patch placement order (for example, left to

right and top down).
Finally, all the as-yet unfilled regions in the output height

field are filled using regions from the input that do not contain

any strong features. The final result is depicted in Fig. 6f. In

both stages, several candidate patches are considered for

placement and the patch that is selected for use is the one that

gives the least cost in terms of its match with the user’s sketch

and its overlap with already placed patches. (Patch placement

invokes a graph-cut algorithm to select which pixels should

be deposited in the output height field and this will be

described in Section 5.1). In Sections 4.1 and 4.2, we describe

these matching and placement operations in more detail.

4.1 Feature Patch Matching and Placement

As described above, isolated features in the user’s sketch

are either branch points or endpoints in the segment graph.

Fig. 6b contains three branch points and five endpoints. The

system analyzes the user’s sketch map and identifies all

such isolated features. One by one, each such isolated

feature is examined and a list of candidate matches is

formed from the isolated features in the example height

field. We will consider branch points and endpoints in turn.

4.1.1 Branch Points

For branch-point matching, the degree (or valence) of the

branch points must match and the angles of the outgoing

segment chains must be similar. For determining the quality

of angle matching, only d possible alignments have to be

considered for a degree d branch point. For instance, as

shown in Fig. 5d, the degree 3 branch patch would have

three alignments ð1; 2; 3Þ ! ð1; 2; 3Þ; ð2; 3; 1Þ; ð3; 1; 2Þ (the

mirror image of this patch is treated as a new patch and

its alignment is a separate process). Because there are

typically not many such branch points in a given example

height field, testing against all candidate matches is

extremely fast.
To perform warping of a candidate patch to fit the user’s

sketch, first a set of control points fPig must be identified

for the patch. These control points consist of the location of

the branch point itself, plus those places where each

outgoing path intersects a circle that is inscribed in the

patch (see Fig. 5d). For instance, a patch with a three-way

branch will have a total of four control points. Correspond-

ing control points fP 0ig are also defined for the patch from

the sketch map. Now, we desire a continuous coordinate

transformation that maps the control points fPig to fP 0ig
and that gives the minimal amount of distortion. We use a

thin-plate spline (TPS) interpolant [33] for this purpose

because it works well with few constraints and it introduces

minimal distortion as measured by the integral bending

norm. We use two separate TPS functions to form a

coordinate transformation that maps any position in the

original height field to its interpolated location in the

warped height field. The best k branch-point patches with

the lowest deformation energy are the candidates for

further matching.
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Fig. 5. Examples of terrain patches for each feature type. (a), (b), and
(c) Branch point, endpoint, and path patch, respectively. (d), (e), and
(f) Corresponding patches after feature extraction. Border colors identify
feature types in Fig. 6b.

Fig. 6. Illustration of patch placement order. (a) Sample sketch map.
(b) Tree structure returned by PPA analysis. Branch-point features and
endpoint features are connected by curvilinear path features. (c) The
root patch is placed first. (d) Breadth-first traversal guides the placement
of additional patches. (e) Once tree traversal is complete, begin placing
nonfeature patches. (f) Final result.



4.1.2 Endpoints

Endpoint matching is straightforward because all endpoints
have similar curvilinear features: a relatively short segment
chain going out of the endpoint, which can be aligned
easily. Thus, we select all endpoint patches (Fig. 5e) as
candidates for further matching without applying warping
in this case.

4.1.3 Path Features

All of our curvilinear features are chains of line segments
(from PPA) that stretch between two isolated features. Our
system finds matching patches along such curvilinear
features while traversing these chains of line segments in
the user’s sketch. The system travels along these chains in
steps that are one-half a patch in size, laying down a patch
with each step. As with branching patches, the candidate
patches along a curvilinear feature are deformed to better fit
the user’s sketch. There are always three control points, P0,
P1, and P2, in the candidate patch (Fig. 5f), and three
corresponding points, P 00, P 01, and P 02, in the user’s sketch
that determine the warp. The outer control points P1 and P2

are located where the path crosses the inscribed circle of the
patch. The central point P0 is the midpoint in the chain
within a patch, which is analogous to the central control
point in a branch patch.

All of the candidate patches are ranked according to a

combination of matching criteria. The best candidate patch

is merged in the output height field. We use the following

cost terms:

. cd. This refers to the deformation energy from the TPS

warping (we refer the readers to [33]). The deforma-

tion energy measures how well the candidate patch
terrain structure matches the sketch map constraints.

Although TPS warping can warp the patch into the

desired configuration in most cases (except for

degenerate cases such as when three control points

are collinear), a large deformation results in a notice-

able distortion and is penalized here.
. cg. This refers to the graph-cut score (see Appendix A).

The graph-cut seam cost is an indication of how well

the candidate patch matches the already merged
patches in the overlap regions (graph cut automati-

cally handles the case where one patch overlaps with

multiple patches and the overlapping can be disjoint).

A higher graph-cut score means the seam is more

noticeable and harder to remove by Poisson editing.

. cf . This refers to the feature dissimilarity cost. The
dissimilarity cost measures how closely features
along the joining paths are matched.3 We uniformly
sample the curvilinear path and store a coarse height
profile perpendicular to the path (our current
implementation uses a 7-point profile) at each
sampled point (Fig. 7). When the path joins the
other path at point P , the height profile at P is
linearly interpolated from the profiles stored at its
two nearest neighbors, P2 and P3. Height profiles
from joining paths are compared using the sum of
squared differences (SSD).

. cis. This refers to other user specified constraint(s)
such as the height constraint or the path smoothness
constraint.

The total cost is then a linear combination of all of the
matching costs c ¼ �dcd þ �gcg þ �fcf þ

Pn
i¼1 �ici. Note that

the �s serve not only as weights, but also as normalization
coefficients for the costs. In our current system, we set
�d ¼ 1; 000, �g ¼ 1, and �f ¼ 3 for most test cases. Changing
these coefficients changes the emphasis on the matching
criteria and results in different synthesis results. After
curvilinear feature matching and breadth-first search order
placement, the output height field looks like the one in Fig. 6e.

Fig. 8 shows a comparison between raster-scan and tree-
ordered patch placement using the sketch map in Fig. 10a and
the example height map of Fig. 10b. The inner structure of the
� symbol is garbled in the raster scan result (Fig. 8a). This is
because the row-based scan locks onto the boundary of the
circle immediately, creating constraints on future matching
that prevent good matches in the interior. As Fig. 8b shows,
both the�and the circle can be reproduced if the most difficult
element (the center branch point) is matched first.

4.2 Nonfeature Patch Placement

Once the isolated features and curvilinear features have been
placed, the empty areas in the output height field are those
places without strong features. A feasible way to fill these
areas is to copy patches that match the pixels that have
already been placed. To do this, our system “grows out” from
the already filled-in areas. Specifically, square patch positions
in coarsely spaced increments (for example, every 100 pixels
horizontally and vertically) are filled in descending order
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3. The graph cut cost gives an overall measure of the overlap quality, but
it weights every pixel in the overlap region equally. It is difficult to integrate
the feature dissimilarity measure into the graph cut algorithm; therefore, a
separate feature dissimilarity cost term is introduced into our system to
place emphasis on features.

Fig. 7. (a) Height profiles perpendicular to the path are stored at

uniformly sampled points along the path. The height profile at point P

that joins two paths is linearly interpolated from the profiles stored at P2
and P3. (b) An example of the 5-point height profile that is stored at P3.

Fig. 8. (a) Synthesis result using raster-scan patch placement order.

(b) Synthesis result using tree traversal.



according to the area of the overlapping region with the
already synthesized height field.

The system looks for a high-quality match between such a
patch and the already synthesized height field based on the
SSD of the overlapping regions and selects k candidates. It
then finds the best match according to the combination of the
SSD score and the graph-cut cost in merging. The best patch is
placed and the system continues traversing the output height
field looking for overlaps. The process terminates when all
pixels in the output map have been filled.

The SSD-based search to find the patch that best matches
the already synthesized output height field can be acceler-
ated using Fast Fourier Transforms (FFTs) [34], [35]. Using
the FFT-based approach, the matching cost can be com-
puted in Oðn logðnÞÞ time, where n is the number of pixels
in the source height field. This is in comparison to Oðn2Þ
time for a naive SSD implementation.

5 PATCH MERGING

Our system combines two techniques to assure smooth
transitions between patches that are placed in the output
height field. The first of these is the graph-cut technique
[26], [36], which finds good seams between already placed
pixels and the pixels from a region that is in the process of
being placed. The second procedure solves a discrete
Poisson equation [37] to create more gentle transitions
between the existing pixel elevations and the pixels from a
newly placed patch.

5.1 Graph-Cut Optimal Seam Finder

The graph-cut algorithm finds a seam in the overlapping
region between patches that determines which pixels will
be kept in the final image. This is accomplished by solving a
max-flow/min-cut graph problem that minimizes the cost
of mismatched elevations across the cut. Edges in the graph
represent connections between adjacent pixels and they are
given weights based on elevation differences. For some
patches, we want to insist that particular groups of pixels
from a given patch should be included, such as the central
pixels in a branch feature patch. This is accomplished by
setting some of the edge weights infinitely high.

As mentioned earlier, the cost of the final seam from the
graph-cut algorithm is used by the system to select among
candidate patches for representing a given feature. Details
on the use of the graph-cut algorithm for seam finding can
be found in [26].

5.2 Poisson Seam Remover

After the system has placed a new patch into the output
map using graph cut, a discontinuity may still be visible
along the seam (Fig. 9b). We further improve elevation
matching across a seam by adjusting the heights according

to artificially set gradient values at the seams. We do this by
solving a Poisson equation similar to the manner in which
Pérez et al. perform pixel matching across seams in a color
image [37].

Our elevation adjustment stage first translates the
elevation values in the overlap region (typically one-third
of the patch size) into gradient values. Then, the gradient
values across the seam are artificially set to zero. Finally, a
Poisson equation is solved to find the best fit set of
elevations to these adjusted gradient values. The result of
this process is a new set of elevations that is much smoother
at the seam (Fig. 9c). Our system performs such elevation
adjustments locally, invoking the method one time per
placed patch. Performing elevation adjustment locally
avoids the challenge of solving huge matrix equations. For
more details, we refer the reader to Appendix B.

6 TERRAIN SYNTHESIS RESULTS

We used DEMs from the US Geological Survey terrain data
for the results shown in Figs. 1, 10, 11, 12, 13, and 15. The
origin, resolution, and size of the data are listed in Table 1.

Our example height fields range from 1,200 � 1,200 to
4,097 � 4,097 samples at a height resolution of 16 bits. These
large terrain maps pose significant search problems for a
traditional texture synthesis approach. At our patch size of
80 � 80 pixels, there are approximately 16 million possible
matches in a given 4,000 � 4,000 map. However, as a result
of our feature-based analysis, we can filter this total set
down to approximately 600 match evaluations for a given
candidate position to be filled, which dramatically reduces
the computational cost. Our method can synthesize a
representative terrain in approximately 5 to 6 minutes on
an Intel Pentium 4 2.0 GHz processor with a 2 Gbyte
memory. All of the results are rendered using Planetside’s
Terragen terrain rendering system with procedural textures
(determined by height and slope) overlaid on top of the
terrain geometry.

Figs. 10 and 11 illustrate the variation in output that can
be obtained from the same sketch using our terrain
synthesis approach. Fig. 10d shows the synthesis result
(1,000 � 1,000) for the Mount Jackson terrain, and the sketch
map for this example is shown in Fig. 10a. Although this
result was created from many patches, both the interior �
and the outer circle are formed by unbroken mountain
ridges. Also note the characteristic curtainlike folds in the
sides of the mountains. Fig. 10h shows the synthesis results
(2,000 � 2,000) using the Grand Canyon terrain. The sketch
map in Fig. 10e used for this example is the inverse of that
in Fig. 10a so that valleys are selected instead of mountains.
Here, the � and the circle are formed from joined pieces of
the Colorado River, yet the seam locations cannot be
detected. Although guided by the user’s sketch, this terrain

840 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 4, JULY/AUGUST 2007

Fig. 9. Illustration of patch placement and seam removal. (a) Matching patches are identified via graph cut. (b) Patch placement results in a seam.

(c) Poisson seam remover yields the final output.



retains the rich water-carved features of the original data.
Fig. 11d shows the synthesis result (1,000 � 1,000) for the
Mount Vernon terrain, and Fig. 11h shows the synthesis
results (2,000 � 2,000) using the DEM from Flathead
National Forest mountain region. Fig. 12d shows the
synthesis result (1,000 � 800) for the Mount Vernon terrain
with a user sketched Chinese character for “water.” These

results illustrate the ability of our system to work with a
wide variety of terrain types with very different character-
istics while maintaining the salient features of the input
sketch map. Fig. 15 provides close-up views of the Grand
Canyon and Flathead range synthesis results. Fig. 13a
shows a rendering of the Grand Canyon height map. We
extract the canyon feature from this map using PPA to
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Fig. 10. Multiple terrain synthesis results with the sketched half-life symbol. (a) User sketch. (b) Mount Jackson. (c) Synthesis result. (d) Rendered

terrain synthesized from an elevation map of Mount Jackson, Colorado. (e) User sketch. (f) Grand Canyon. (g) Synthesis result. (h) Rendered terrain

synthesized from an elevation map of the Grand Canyon.



obtain a sketch map. By synthesizing the sketch in the style
of the Puget Sound DEM, we obtain a “mountain” version
(4,000 � 2,000) of the Grand Canyon, illustrated in Fig. 13b.

6.1 Synthesis with Multiple Terrain Styles

A larger example, illustrated in Fig. 14, shows the generation
of a 3D map of Middle Earth using several different terrain

styles. A simple sketch map (Fig. 14b) was created by the user
from an artist rendering of the map of Middle Earth (Fig. 14a).
The user assigned different terrain styles to each part of the
sketch map (Table 2). In this example, the user first placed
Mount St. Helen at the location of Mount Doom in Mordor (a
localized feature). Our system then synthesized the rest of the
terrain (3,470�2,996) automatically and merged it seamlessly
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Fig. 11. Multiple terrain synthesis results with the sketched half-life symbol. (a) User sketch. (b) Mount Vernon. (c) Synthesis result. (d) Rendered

terrain synthesized from an elevation map of Mount Vernon, Kentucky. (e) User sketch. (f) Flathead range. (g) Synthesis result. (h) Rendered terrain

synthesized from an elevation map of Flathead National Forest mountain range, Montana.



with Mount Doom. Note that the user sketch includes both a
variety of mountain ranges and a river valley (the Dead
Marshes, near the northwest corner of Mordor). The coast,
lakes, and rivers were created using a simple mask, which was
extracted from the original map. The synthesized height map
(Fig. 14c) was rendered using Planetside’s Terragen terrain
rendering system with both procedural and masked textures
to give it an artistic feel. This example illustrates the ability of
our system to combine multiple terrain styles into one
synthesized terrain and to blend seamlessly among them.

Please view the movie (DivX encoded) that accom-
panies this paper at http://www.computer.org/tvcg/
archives.htm. Additional results may be found at http://
www.cc.gatech.edu/howardz/terrain.

7 CONCLUSION

We have demonstrated that example-based texture synth-
esis methods can be successfully adapted to the domain of
terrain synthesis. The result is a new level of visual realism
in a user-controllable synthesized terrain. Our approach
leverages the fact that useful terrain features can be
extracted from height fields using analysis techniques from
the geomorphology community.

We have introduced a tree-ordered patch placement
algorithm that is based on a breadth-first traversal of a
feature tree. Our results demonstrate that this placement
method is superior to standard raster-scan placement orders.

We have demonstrated the ability to synthesize terrain in
widely differing styles while retaining control over the
positioning of major terrain features. Our system is based
on an intuitive sketch-based interface for specifying the
desired terrain characteristics. We believe ours is the first

system to make full use of an example-based approach in
the domain of terrain synthesis.

Our method suffers from the same limitations as all
example-based methods. In particular, the quality of the
final synthesis depends upon the richness of the available
terrain data. If the terrain features desired by the user
cannot be found in the example height field, then it will not
be possible to produce the desired result. For instance, our
method will perform poorly if the terrain data is from a
desert region where few significant curvilinear features are
present. The method can also perform poorly when the
curvilinear feature pattern is extremely complicated. An
additional issue is the need to specify the patch size, which
depends in turn upon the resolution and scale of the
example terrain.

We plan to extend our current method in several ways.
First, it would be interesting to give the user greater control
over the synthesized terrain by incorporating additional
constraints into the sketch map. For example, we plan to
provide the ability to specify a desired elevation at a specific
position. This could be accomplished by constraining the
Poisson solver in conjunction with the matcher. We are also
investigating the enforcement of C1 continuity in addition
to our current enforcement of C0 continuity. We intend to
explore the joint synthesis of elevation and texture maps for
rendering and the interactive control of terrain synthesis.

APPENDIX A

GRAPH-CUT SEAM FINDING

The graph-cut algorithm finds the minimum cost seam
(according to some matching quality measure) in the
overlapping region between patches that determines which
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Fig. 12. Terrain synthesis result with the sketched Chinese character for “water.” (a) User sketch. (b) Mount Vernon. (c) Synthesis result.

(d) Rendered terrain synthesized from an elevation map of Mount Vernon, Kentucky.



pixels will be kept in the final image. We choose the
matching quality measure defined in [26], which is a
measure of intensity (elevation) difference between the
pairs of pixels. For example, in Fig. 16, let s and t be two
adjacent pixel positions in the overlap region � between
patch A and B. Let aðsÞ and bðsÞ be the elevation at the
position of the patches, respectively. Then, the matching
quality measure M between the two adjacent pixels at
position s and t from patches A and B is defined to be

Mðs; t; A;BÞ ¼ jaðsÞ � bðsÞj þ jaðtÞ � bðtÞj: ð1Þ

The graph shown in Fig. 16 has one node per pixel in the
overlap region between patches. The weight of the edge
connecting the adjacent pixel nodes s and t is set to equal the
matching quality cost Mðs; t; A;BÞ. We use two additional

nodes A and B to represent the old and new patches. The
edges that connect pixels in � and nodes A and B are set to
have infinitely high weights indicating that these pixels are
constrained to come from one particular patch. In Fig. 16,
pixels 1, 2, and 3 have to come from patch A and pixels 7, 8,
and 9 fromB. To determine which patch each of the pixels 4, 5,
and 6 will come from, we solve a max-flow/min-cut graph
problem that minimizes the cost of mismatched elevations
across the cut. The red line shows the minimum cut (the
elevation difference between the two patches along the cut is
minimum). In the overlap region, pixels 5 and 6 will be copied
from the old patch B since they are still connected to node B.
Likewise, pixel 4 will be copied from A. The cost cg of the
minimum cut C is defined in terms of the matching quality
measure as

cg ¼
X

<s;t> 2 C
s;t 2 �

Mðs; t; A;BÞ: ð2Þ

For some patches, we want to insist that particular groups of
pixels from a given patch should be included, such as the
central area surrounding a branch-point feature or along a
path. This is accomplished by setting the edge weights
connecting those areas to the nonoverlapping region infi-
nitely high.
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Fig. 13. The Grand Canyon turned into a mountain range. Features extracted from the Grand Canyon DEM are used as the user sketch to
synthesize a mountain range following the structure of the Grand Canyon from an elevation map of the Puget-Sound-style mountain range.

TABLE 1
Input DEM Locations, Resolution, and Sizes



APPENDIX B

POISSON SEAM REMOVAL

Even using the graph-cut approach to choose where to join

two patches, elevation differences may still be visible. For

example, in Fig. 9a, the overlap region � is the new height

field from our graph-cut seam finder. Though optimum,

seam C is still visible in the new height field (Fig. 9b). We

will describe how we remove this seam through our

Poisson elevation adjustment method.
Let � be a closed subset of IR2 with boundary @�. Let f

be the elevation value in the overlap region; hence, f is a

scalar function defined over �. Our elevation adjustment

stage first translates the elevation values in � into gradient

vector fields v ¼ ðu; vÞ, with u ¼ @f
@x and v ¼ @f

@y . To remove

the height difference between pixels across the seam C, the
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Fig. 14. A 3D map of Middle Earth synthesized from multiple elevation maps. (a) Map of Middle Earth. (b) User sketch with masked water system.

(c) Synthesis result. (d) Rendered terrain synthesized from multiple elevation maps.
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Fig. 15. Close-up views of synthesized terrain from the Grand Canyon (top images) and Flathead National Forest mountain range (bottom images).



gradient values along the seam are artificially set to zero.

However, the resulting gradient vector field v0 is most likely

no longer conservative ðcurlðv0Þ 6¼ 0Þ; in other words, it is

no longer the gradient of any scalar function. Here, the

Poisson methodology comes into play because it allows

nonconservative vector fields to be used to reconstruct a

plausible elevation field. As shown in [37], we can find the

best fit set of elevations f 0 to the adjusted vector field v0 by

solving the Poisson equation with Dirichilet boundary

conditions.
The result of this process is a new set of elevations that

change very little at the seam, as shown in Fig. 9c.
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[26] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick, “Graphcut
Textures: Image and Video Synthesis Using Graph Cuts,” ACM
Trans. Graphics, Proc. 30th Int’l Conf. Computer Graphics and
Interactive Techniques (SIGGRAPH ’03), vol. 22, no. 3, pp. 277-286,
2003.

[27] Q. Wu and Y. Yu, “Feature Matching and Deformation for Texture
Synthesis,” ACM Trans. Graphics, Proc. 31st Int’l Conf. Computer
Graphics and Interactive Techniques (SIGGRAPH ’03), vol. 23, no. 3,
pp. 364-367, 2004.

[28] P. Bhat, S. Ingram, and G. Turk, “Geometric Texture Synthesis,”
Proc. Eurographics Symp. Geometry Processing, 2004.

[29] A. Lagae, O. Dumont, and P. Dutré, “Geometry Synthesis by
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