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ABSTRACT

Automated segmentation of pigmented skin lesions (PSLs)
from dermoscopy images is an important step for computer-
aided diagnosis of skin cancer. The segmentation task in-
volves classifying each image pixel as either lesion or skin.
It is challenging because lesion and skin can often have simi-
lar appearance. We present a novel exemplar-based algorithm
for lesion segmentation which leverages the context provided
by a global color model to retrieve annotated examples which
are most similar to a given query image. Pixel labels are gen-
erated through a probabilistic voting rule and smoothed using
a dermoscopy-specific spatial prior. We compare our method
to three competing techniques using a large dataset of der-
moscopy images with hand-segmented ground truth, We show
that our exemplar-based approach yields significantly better
segmentations and is computationally efficient.

Index Terms— segmentation, dermoscopy image, pig-
mented skin lesion, exemplar-based, spatial prior

1. INTRODUCTION

Skin cancer is the most common form of malignancy that oc-
curs in humans in the United States [1]. Dermoscopy, a non-
invasive imaging technique, is widely used for early detection
of many forms of skin cancer. It involves using an incident
light magnification system and a liquid medium applied at the
skin-scope interface to enable clinicians performing detailed
examination of pigmented structures beyond what would be
visible to the naked eye. Studies have shown that using der-
moscopy can improve the diagnostic accuracy of dermatolo-
gists by as much as 30% over clinical examination [2]. How-
ever, this improvement is seen primarily when dermoscopy is
used by trained experts; in the hands of inexperienced der-
matologists, dermoscopy may actually lower the diagnostic
accuracy [3]. In an effort to reduce errors due to the difficulty
and subjectivity of human visual interpretation, there has been
increasing interest in the development of computational anal-
ysis of dermoscopy images.

The first step of such analysis is often the segmentation
of a lesion from its surrounding skin. The resulting border
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structure provides a basis for the calculation of important clin-
ical features, such as lesion size and symmetry axes. In ad-
dition, it is crucial for the extraction of some of the most
discriminating dermoscopic features such as radial streaming
and pseudopods. In recent years, a number of methods have
been developed for the automatic segmentation of PSLs in
dermoscopy images. See [4] and Sec. 2 for a review.

A majority of these methods assume the lesion and skin
pixels define two separable distributions in some chosen fea-
ture space, in which case a good segmentation can be found
by maximizing the separation between distributions. Unfortu-
nately, this assumption does not hold in practice. Pigmented
skin lesions can vary widely in appearance, resulting in lesion
color distributions that are not compact and exhibit substantial
overlap with skin. Four common sources of variability are de-
picted in Fig. 4, from the top down: (1) low contrast between
the lesion and surrounding skin, (2) compound characteristics
in lesion appearance, i.e. differences in appearance within
the lesion are greater than the differences between lesion and
skin, (3) fragmentation due to regression or depigmentation,
and (4) complex background skin appearance. When methods
based on the maximum separation assumption are applied to
such images, they are likely to produce erroneous results.

The key idea in this paper is that the contextual infor-
mation provided by the overall appearance of the lesion and
its surrounding skin can be exploited to adaptively adjust the
classification criteria on a per-pixel basis. This is inspired
by the ability of experienced dermatologists to recognize the
various conditions under which a particular pixel could be le-
sion, based on having seen a large number of examples of
PSLs. More concretely, we hypothesize that PSLs which have
similar morphology are likely to be similar in appearance,
and are therefore likely to be “neighbors” with respect to a
distance measure such as the Chi-squared distance between
color histogram vectors. In this context, a lesion can be seg-
mented by labeling each histogram bin as either lesion or non-
lesion. Therefore, we would expect “nearby” histograms to
agree on their labeling. On the basis of this insight, we have
developed a novel exemplar-based pixel classification algo-
rithm which indexes into a database of previously-segmented
dermatoscope images to identify relevant examples, and then
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Fig. 1: Illustration of exemplar-based segmentation algorithm with
adaptive context.

generates segmentation labels through a probabilistic voting
method. Our approach produces significantly better results
than methods which employ a single global segmentation cri-
teria, and it is highly efficient and simple to implement. In
addition, we show that an existing technique for enforcing
spatial constraints on dermoscopy image segmentations [5]
can be utilized to smooth the segmentation map, resulting in
a more uniform output and an additional decrease in segmen-
tation error. The performance of our approach is compared to
state-of-the-art methods on a hand-segmented dataset of more
than 2300 PSL images, which is among the largest in the pub-
lished literature. Our experiments quantify the benefits of our
method in comparison to existing techniques.

2. RELATED WORK

Existing segmentation methods can be roughly classified into
three categories: edge/contour-based [6], region-merging and
clustering-based [7, 8, 5], and thresholding/classification [9,
10] methods (see [4] for a detailed review). Unsupervised
methods that attempt to cluster the feature data into lesion
and skin distributions are unlikely to succeed due to the over-
lap between the two classes. Our approach is most similar to
supervised learning methods which train a classifier using la-
beled examples (e.g. the neural network approach in [9]). In
fact, our technique is most related to SVM classifiers, which
employ a kernel distance measure related to ours. The pri-
mary advantage of our approach in comparison to SVM and
other supervised methods is the ability to interactively adjust
the set of exemplars on-the-fly, effectively tuning the neigh-
borhood definition for a query image. For example, in the
context of an interactive retrieval system, a user could easily
refine the segmentation by modifying the relevant exemplars.
Such flexibility would be difficult to obtain using an offline-
trained supervised learning method.

3. EXEMPLAR-BASED PIXEL CLASSIFIER

Fig. 1 illustrates our exemplar-based pixel classification ap-
proach. We start with a gallery of pre-segmented exemplars.
Each exemplar has an associated color histogram, which de-

Fig. 2: Algorithm performance on four difficult example lesions (one
per row). Cols 1 and 2 are smoothed and unsmoothed segmentation
results. Col 3 is query image, while cols 4-7 show the four nearest
exemplar neighbors.

fines the “context” for image matching. First, we identify
the neighboring exemplars for a given query image, via chi-
squared histogram matching. The exemplars are shown in the
top row of the green box in Fig. 1, ordered by distance. Below
each exemplar is a 2D rendering of its color histogram, where
the size of each colored square is proportional to the number
of counts.

Our goal is to classify each histogram bin as lesion or skin,
thereby labeling all pixels in the query image. A representa-
tive bin, whose correct label in the query image is “lesion,” is
shown in the figure with a green border. The pixels belonging
to this bin are “highlighted” in each of the images.' Note that
this bin arises as both lesion and skin across the exemplar set
in Fig. 1, underscoring the limitation of the separable assump-
tion. The highlighted bin has a probability of being lesion in
each of the exemplars, as indicated by the red/black bars in
the figure. These exemplar probabilities are combined using
weights derived from the histogram distances to obtain the
predicted lesion probability in the query image histogram (in
this example, correctly classified as lesion). The leftmost ex-
emplars, being the closest to the query image, determine the
vote, while the rightmost exemplars are ignored. Note that
this approach is completely general and could be applied to
any image-based segmentation problem.

We now describe the approach in more detail. Let X =
{Z; }ics be the observed data from an input image where S is
a set of image sites to be labeled, and &; € R€¢ is the feature
vector at site ¢ (in this work, x; is pixel color and ¢ = 3). Let
H ()Z ) denote the histogram of feature values for the image
pixels. The corresponding labels are given by Y = {y;}ics,
y; € {0,1}, representing skin or lesion. We define the la-
bel probability distribution for pixel z; as P(y;|hm, H(X)),
where ﬁm is the color feature vector at the center of the his-
togram bin m which contains z;. Note that in this model,

The highlighting effect is achieved by reducing the opacity of the pixels
that are not in the specified bin, causing the pixels within the bin to appear
more prominent in the image.



spatially-adjacent labels are conditionally independent given
the histogram. We discuss the enforcement of spatial con-
straints in Sec. 4.

In addition, we are given a library of exemplar images
X = {X;},j € {1,---,J} with a corresponding set of
ground-truth labellings J = {)_’;} We use the annotated ex-
emplars to construct the posterior probability distribution for
each quantized feature vector as follows:

. . 1 & . .
Piymlfim, H(X)) = 52 3w Py, H(X)), (1)
k=1

where K is some fixed number of closest neighbors. Here,
proximity is defined by the histogram distance between two
images, d; = d(H()Z),H(X])) The normalized weight
w, = di?/ 3% d? determines the influence each ex-
emplar has on the final decision. Given the probability
model in Eq. 1, the final label assignment is given by Y* =
argmax P(V|H(X)) = argmax[] Pi(ymlfim, H(X)).
% ¥

Returning to Fig. 1, we can identify thé: histogram distances
as dy. For the highlighted bin m, the red/black bars corre-
spond t0 P (Y |him, H(X})). The pixels corresponding to
bin m are rendered in each image with the color B

Fig. 2 illustrates the segmentation results and associated
exemplar neighbors for four representative examples of le-
sions that are difficult to segment reliably. The four query im-
ages are illustrated in column 3. Columns 4-7 show the four
nearest neighbors returned from the dataset. Note that the
similarity is defined only in terms of color histogram, and not
based on lesion shape or pigmentation pattern. Nevertheless,
our experiments show that this similarity measure enables us
to achieve good segmentations while maintaining computa-
tional efficiency. The images in column 2 illustrate the per-
pixel lesion probabilities (high probabilities are white) pro-
duced by our method. Column 1 shows spatially-smoothed
probability estimates produced using the technique that we
will describe in Sec. 4.

4. ENFORCING SPATIAL SMOOTHNESS

Spatial dependencies between pixels can be used to enforce
a local smoothness constraint on image segmentations. In
the case of dermoscopy images, the growth pattern of PSLs
results in a radiating appearance, so that pixels at the same
distance from the center of the lesion are more likely to be
statistically dependent. We use a recent approach from [5] as
a postprocessing method to enforce smoothness; we review it
briefly here for completeness: The pixel color vector is aug-
mented with a normalized polar radius which is O at the center
of the lesion and 1 at the corner. k-means++ [11] clustering
is then used to group the 4-D feature vectors into segments.
Fig. 3 illustrates the identified segments for a typical lesion
image. Notice the annular rings which follow the growth pat-
tern. We use these segments to smooth the probability esti-

Fig. 3: Dermoscopic specific radiating appearance captured by the
clustering step.

Fig. 4: Segmentation results for the images of Fig. 2. Col 1 is the
image, col 2 is the groundtruth. Cols 3-7 are results generated by the
SEBC, EBC, SCS, SRM, and JSEG methods.

mates: Within each segment, we compute the average poste-
rior according to Eq. 1 and take the max to obtain the label
for that segment. By using a large number of segments (32
in our examples) we obtain a detailed segmentation which re-
spects spatial continuity in a manner that is consistent with
the growth patterns of PSLs. The final segmentation bound-
ary is obtained by post-processing the mask with connected
component analysis and morphological operations.

5. EXPERIMENTAL RESULTS

We evaluated the performance of our method on three der-
moscopy datasets with ground truth segmentations. Dataset
D1 consists of 67 images labeled by two expert dermatolo-
gists, and was provided by the authors of [5]. Dataset D2
contains 111 images, and includes many difficult cases such
as examples in the first and third rows in Fig. 4. It was labeled
by two expert dermatologists. Dataset D3 combines D1 and
D2 with an additional 2159 images from a variety of sources,
including standard dermoscopy books [12, 13].> Ground truth
labels for these additional images were provided by a skilled
operator.

We conducted a total of five experiments in which we
compared the results from our exemplar-based classifier
(EBC) and its spatially-smoothed version (SEBC) to three
existing methods: JSEG [14], a method that consists of color
quantization and a subsequent region growing step to locate

2Images came as jpeg files on the companion CDs of the books.



lesion borders, SRM [8], a method based on the statistical
Region Merging algorithm, and SCS [5], a clustering-based
method that incorporates a dermoscopic spatial prior. These
methods represent the standard approaches to PSL segmen-
tation and were chosen for their competitive performance.
Using software provided by the authors,®> we tested each
method on our three datasets. For datasets D1 and D2, we
performed leave-one-out cross-validation, treating each im-
age as a query and using the remaining images as exemplars.
For D3, 550 exemplars were randomly chosen and the re-
maining 1787 images were used for testing. Segmentations
were scored using the standard XOR metric [8], which reports
the area of the XOR between the prediction and groundtruth
masks, normalized by the ground truth area.

The three parameters for our method were determined
empirically, by searching over sets of possible values. These
include the number of histogram bins per dimension n
(from {10, 20, 30,40}), the number of neighbors K (from
{3,...,10}), and the number of clusters for spatial smooth-
ing N (from {10, 20, 30,40}). In addition, we also explored
two color spaces: RGB and CIE L*a*b* and four histogram
distance measures: intersection, correlation, chi-square, and
Bhattacharyya. The parameters were tuned on a randomly-
selected subset of images from D2. The results were not
sensitive to the choice of parameters. The best combination,
n =20, K =5, N = 20, RGB, and Bhattacharyya, was used
for all of the experiments.

Fig. 5 shows the average XOR errors for all methods.
Both EBC and SEBC consistently out-performed all other
methods, frequently by a large margin. In the case of datasets
D1 and D2, the existence of two separate hand-segmentations
allowed us to estimate the inter-operator error, which was
11.32 for D1 and 13.72 for D2. Note that on dataset DI,
SEBC came within 2% of the expert inter-operator error. All
experiments were performed on an Intel Pentium D processor
clocked at 3.20GHz with 3GB of memory. The average ex-
ecution time in seconds was computed for dataset D2 and is
reported in the fifth column of Fig. 5. EBC and SRM were
the fastest.

Fig. 4 shows example segmentations for the images of
Fig. 2, which are difficult cases. Due to low contrast, the
lesion in the first row is missed by all previous methods. Our
approach is successful because it can exploit contextual infor-
mation from neighbors with similar appearance (as illustrated
in row 1 of Fig. 2). Similarly in row 2, the ability to retrieve
neighbors with compound appearance results in improved
performance. Comparing the results from SEBC and EBC
(columns 2 and 3), we find that incorporating dermoscopy-
specific spatial constraints improves border localization and
segmentation quality.

3The JSEG software failed for some images in D3, so we omitted results
for that combination.

[ Method | DI [ D2 | D3 | Time |
JSEG [ 20.43 [ 32.81 - 9.67
SRM | 20.77 [ 3950 | 36.77 | 0.46
SCS 14.93 [ 2877 | 3958 | 572
EBC [ 1370 | 26.76 | 2223 | 0.45
SEBC | 1336 | 25.88 | 20.62 | 4.37

Fig. 5: Percentage border error using the XOR grading system

6. CONCLUSION

We have described a novel lesion segmentation algorithm for
dermoscopy images that leverages a set of exemplars anno-
tated by experts and incorporates dermoscopy-specific spatial
smoothing. Our method consistently outperforms three ex-
isting approaches on a large hand-segmented dataset. It is
computationally efficient and simple to implement, and po-
tentially effective in other problem domains.
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