DUAL RANGE DERINGING FOR NON-BLIND IMAGE DECONVOLUTION
Le Zou®, Howard Zhou*, Samuel Cheng§ and Chuan He't

TVisual Computing Group, Intel Corporation iSchool of Interactive Computing, Georgia Institute of Technology

8School of Electrical and Computer Engineering, University of Oklahoma

T 1Institute of Oil and Gas, Peking University

Email: le.zou@intel.com, howardz@cc.gatech.edu, samuel.cheng@ou.edu, CHe @pku.edu.cn

ABSTRACT

The popular Richardson-Lucy (RL) image deconvolution al-
gorithm often produces undesirable ringing artifacts. In this
paper, we propose a novel Dual Range Deringing (DRD)
algorithm to address this problem. As a post-deconvolution
scheme, the proposed approach follows RL deconvolution
and removes ringing artifacts by utilizing information from
both the input blurred image and the RL-deblurred image.
DRD first marks smooth regions in the input blurred image
that are likely to be subjected to ringing artifacts far away
from any strong edge. It then identifies short-range ring-
ing artifacts from the regions that surround strong edges
in the RL-deblurred image. Once marked, both long- and
short-range ringing artifacts are then suppressed by an edge-
preserving deringing filter. We demonstrate the effective-
ness of this procedure by performing experiments on a set of
images blurred with various Point Spread Functions (PSFs).
We compare DRD with state-of-the-art non-blind deconvo-
lution algorithms and show that our results are virtually free
of ringing artifacts with only minor detail losses. Moreover,
DRD consists of computationally efficient local operations
and is suitable for parallelization on modern GPUs.

1. INTRODUCTION

As a problem commonly found in many fields from con-
sumer imaging to astronomy, image deblurring has attracted
attentions from both academia and industry. When the blur
kernel is known [1], the image deblurring problem is re-
duced to non-blind image deconvolution. But even when
the blur kernel is given, it is still an ill-posed inverse prob-
lem, and obtaining high quality deblurring results remains
a challenge. Many solutions have been proposed over the
years. Among them, Richardson-Lucy deconvolution [2]
has become a de facto approach due to its simplicity and
high tolerance to noise. However, when blur kernels are
large, RL deconvolution often produces noticeable ringing
artifacts.

It is commonly believed that removing ringing artifacts
directly from RL-deblurred results is very difficult [3]. Hence,
most proposed approaches have been focusing on posting
additional constraints. These techniques [3, 4] either re-
quires limited blur kernel size or are computationally ex-
pensive. As an alternative, we show that it is possible to
remove ringing artifacts on deblurred images while preserv-
ing important details. Our technique, Dual Range Dering-

ing (DRD), acts as a post-deconvolution processing and re-
moves ringing artifacts by utilizing information from both
the input blurred image and the RL-deblurred image. As
illustrated in Fig. 1. The idea is to mark locations that are
likely to be subjected to ringing artifacts by exploiting both
long- and short-range consequences from the deconvolution
process. From the input blurred image, DRD marks large
smooth regions where long-range ringing artifacts will be
more noticeable after the deconvolution. The short-range
ringing artifacts, by definition, are ringing artifacts that have
not yet propagated far away from their source, strong edges,
and these strong edges, are readily distinguishable even in
an artifact-ridden deblurred image. DRD accomplishes both
artifact marking tasks by standard edge detection, and once
marked, ringing artifacts are suppressed by an effective edge-
preserving deringing filter.
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Fig. 1. Dual Range Deringing (DRD) as a post processing step to
RL deconvolution for ringing artifacts removal.

Compared to the image deblurred by RL deconvolution
(Fig. 2(RL)), the resulting image (Fig. 2(D)) is virtually free
of ringing artifacts and remarkably few details are lost in
the process. The close-up views also show separately the
long-range (Fig. 2(LR)) and short-range (Fig. 2(SR)) ring-
ing artifacts. Also included for reference are the original
image (Fig. 2(0)) and deblurring result from a state-of-the-
art non-blinded deconvolution algorithm [4] (Fig. 2(S)). The
corresponding full image deblurring results can be found in
Fig. 3. Our experiments indicate that, paired with standard
RL-deconvolution, DRD can achieve deblurring results that
are comparable to more sophisticated state-of-the-art algo-
rithms [4], while requiring just a fraction of others’ time.
Moreover, since DRD consists of mostly local operations, it
is readily parallelizable for even greater efficiency.



Fig. 2. Non-blind deconvolution example with a 31 x 31 blur kernel. From left to right: blurry image with the blur kernel, and non-blurry
close-up views from : (RL) RL deconvolution result, (LR) RL result with Long-Range ringing suppressed, (SR) RL result with Short-Range
ringing suppressed, (D) RL result after applying the complete DRD process, (O) Original image, and (S) result from Shan’s algorithm [4].

2. RL DECONVOLUTION AND THE CAUSE OF
RINGING ARTIFACTS

We first review RL deconvolution and explain the cause of
its ringing artifacts. RL deconvolution is an iterative proce-
dure that recovers a maximum likelihood solution of a latent
image given its blurred version and the blur kernel. During
each iteration, RL produces an estimate to the latent im-
age based on the difference between its previous estimation
and the input. It is robust to noise and computationally ef-
ficient. However, during the iteration process, the initial es-
timation error can accumulate and propagate. These errors
often arise from regions near strong edges, and as the iter-
ation proceeds, they propagate outwards from their source
edges, manifesting as ringing artifacts. Based on their prox-
imity to strong edges, in this paper, we classify these ring-
ing artifacts as either short-range or long range. By defini-
tion, short-range ringing artifacts always appear near strong
edges, and these strong edges are distinguishable even in
poorly deblurred images. In contrast, long-range ringing
artifacts are most noticeable when they appear in regions
in the deblurred image that are mostly smooth, which also
corresponds to smooth regions in the input blurred image.
These two observations led us to our Dual Range Deringing
(DRD) procedure, which we discuss in detail in the follow-
ing section.

3. DUAL RANGE DERINGING

DRD effectively removes both long- and short-range ring-
ing artifacts in three steps. 1) It identifies long-range ringing
regions by examining the edge detection result of the input
blurred image. The area where edge detector rarely fires are
most likely. 2) It marks areas near strong edge response
from the deblurred image as short-range ringing regions.
Both step 1) and 2) require edge detection. In practice, we
found that DRD works well with any reasonable edge de-
tector, and we chose Sobel due to its simplicity. 3) Once all
the regions where ringing artifacts are likely to reside are
marked, DRD examines these regions one small window at
a time, suppressing intensity anomalies if the window cen-
ter is likely to coincide with a ringing artifact. Through-

out these steps, DRD operates entirely in the spatial domain
and requires only local information for deringing. As a re-
sult, DRD is computationally efficient and suitable for par-
allelization.

3.1. Long-Range Ringing Artifact Detection

Long-range ringing artifacts appear in smooth regions far
away from strong edges when initial estimation errors prop-
agate temporally during the RL deconvolution iterations.
They are most noticeable to human eyes due to the strong
contrast between their wave-like shape and the smooth back-
ground. To determine the location of such artifacts, we
exam the edge detection result of the input blurred image
and mark smooth regions that are far away from strong edge
signals, because these are the areas where the long-range
ringing artifacts will be most noticeable if they ever occur.
This stage generates an intensity map LRM.

Algorithm 1 Edge_preserving_deringing_filter(I, Ay,
A2, Az 31,29, X3, LRM, SRM)

1: for Each location (z,y) on I do

2:  Sum=0; Count=0;

3 if (LRM(z,y) = 1) then
4 A=A ¥ =3
5: else
6: if SRM(z,y) = 1) then
7: A=Ay ¥ =23,
8 else
9: A = Ag; Y= 23;
10: end if
11: end if
12z for—A<rl1<Ado
13: for —A <r2 < Ado
14: if (|I(z,y) — I(x +rl,y +r2)| < X) then
15: Count = Count + 1; Sum = Sum + I(x+rl,y+12);
16: end if
17: end for
18: end for
19: D(x,y) = (Sum + I(x,y))/(Count+1);
20: end for
21: Return D;




3.2. Short-Range Ringing Artifact Marking

After marking long-range ringing artifacts, only the unmarked
locations will be considered for short-range ringing artifacts
marking. We limit our search within a certain proximity R
distance away from strong edges. Before applying RL de-
convolution, these strong edges are blurred and mixed to-
gether in these areas. The initial errors at these locations
typically have large values. Consequently, these locations
are likely to contain strong ringing artifacts on the deblurred
image. All locations within R will be examed since it is dif-
ficult to predict exactly where the ringing artifacts will oc-
cur. Also to prevent the deringing filtering from removing
all details in the region, we only consider sites where the
edge response value is below a certain threshold. This stage
outputs a map SRM.

3.3. Edge-preserving Deringing Filtering

With both LRM and S RM ready, we apply our edge-preserving

deringing filter at all marked locations to remove ringing ar-
tifacts. This procedure is described in Alg. 1. Within a cer-
tain range A of a marked location (x, y), the deringing filter
collects its neighboring pixels where the intensity difference
between the operating pixel I(x, y) and its neighbors is be-
low a certain threshold o. Then the values of the collected
pixels are summed up before being combined with the value
of the operating pixel I(x,y).

The input parameter A controls the range of the operat-
ing location for collecting pixels that are affected by ringing
artifacts. Large scale ringing artifacts requires a large value
of A. Since large blur kernel often results in large scale
ringing artifacts, a large A is often necessary for large blur
kernels. Normally we set its value to 5 to 12 depending
on the blur kernel size. Furthermore, given an input image
blurred with a certain kernel, different values of A are ap-
plied depending on whether short-range or long-range ring-
ing artifacts are present. For short-range ringing artifacts,
a smaller value of A will be enough because the scale of
short-range ringing artifacts is much smaller compared to
long-range ringing artifacts.

4. EXPERIMENTAL RESULTS

In this section, we validate the effectiveness of our proposed
procedure by performing non-blind deconvolution on a set
of images with various blur kernels. As a convention, all
images are marked accordingly. Input blurred image be dis-
played with its corresponding blur kernel at its top right
corner. The original image before blurring will be marked
with a big O at its corner. Similarly, we use RL to mark
results obtained after applying RL deconvolution, T - RL
with Total Variation (7V) regularization [5] (with 50 itera-
tions and 0.0016 as regularization factor), S - Expectation-
maximization non-blind deblurring [4], and D for our Dual
Range Deringing (DRD).

Fig. 3 shows three rows of scenery images. The first
blur kernel is 21 x 21, and the other two are 39 x 39, which
are large and of complex shapes. The results suggest that
D (DRD) can effectively remove strong ringing artifacts ex-
hibited in standard RL deconvolution results, making them
comparable to results produced by S, a state-of-the-art al-
gorithm. In fact, S has an overly diffusing effect in textured
regions (See close-up comparisons in Fig 2, notice the win-
dow area and the railings on the bridge and the building).
On the other hand, in regions where short-range ringing ar-
tifacts tangle with underlying texture, such as the ocean in
the New York bank image, while S just blurs the texture, D
sometimes overly suppresses the details, making underlying
texture disappear altogether. In practice, both methods have
exhibited more ringing artifacts on some images while per-
forming better on others. Fig. 4 shows performance com-
parison on images used in [4]. Overall, DRD (D) exhibits
more details than S at the price of tolerating more noise. We
obtain all S results using author supplied parameters. The
parameter settings for DRD (D) are omitted for space con-
sideration. Speed-wise, without much optimization, RL+D
typically requires less than half the time of S. We used the
executable available from the author’s website.

5. DISCUSSION AND CONCLUSION

To conclude, we have proposed a simple yet effective de-
ringing scheme that complements RL deconvolution. As
an efficient alternative to more sophisticated state-of-the-art
non-blind deconvolution algorithms, our method can achieve
remarkably good results. However, for certain images where
the underlying texture is similar to the ringing artifacts, DRD
can perform poorly and remove important details, such is
the case with Picasso’s wrinkles around his eyes. To resolve
this deficiency will be our future work.
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Fig. 3. Non-blind debeconvolution. From left to right: blurry images with their respective PSFs, (RL) deblurred images using standard RL
deconvolution, (S) results from Shan et al. [4], (D) our results using standard RL deconvolution followed by DRD, and (O) original images.

Fig. 4. Non-blind deconvolution images used in [4]. From left to right: blurry images with their respective PSFs, (D) our results using
DRD, and close-up views from deblurred images using: (RL) RL deconvolution followed by DRD, (T) TV regularization, (S) Shan’s
algorithm [4], and (D) our results using RL followed by DRD. None of the original image is available.



