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ABSTRACT

Dermoscopy is an imaging technique dermatologists use to
better visualize pigmented skin lesions (PSLs) and determine
their malignancy. Dermoscopic features revealed by this tech-
nique have been shown to correlate with histopathology fea-
tures, and are used as diagnosis indicators by many derma-
tologists. Hence, automated detection and classification of
these features is the first step toward computer-aided diagno-
sis of melanoma in dermoscopy. In this paper, we present
a novel scale- and rotation-invariant feature detector and de-
scriptor specifically designed as a general visual vocabulary
of dermoscopic features. We compare our feature detector
and descriptor to the popular interest point detectors in the
vision community, namely, SIFT, and a more recent fast vari-
ant, SURF. We demonstrate that our feature detector is more
discriminative and reliable for dermoscopic features.

Index Terms— Computer-Assisted Image Interpretation,
Dermoscopy, Feature detection, Pigmented Skin Lesion

1. INTRODUCTION

Skin cancer is the most common form of malignancy in hu-
mans. Among all its variations, melanoma is the leading
cause of mortality. The incidence of melanoma is increas-
ing at a rate greater than any other form of cancer in the
United States [1]. However, when melanoma is caught in
its early stage, it can often be cured with a simple excision.
Dermoscopy is a non-invasive imaging technique to aid in
melanoma detection. During image acquisition, the clinician
places an incident light magnification system (a.k.a. dermato-
scope) at the area of interest, frequently with a liquid con-
tact medium applied at the skin-scope interface. This allows
the incident light to penetrate the top layer of the skin tissue
and permits a detailed examination of the pigmented struc-
tures beyond what would be visible to the naked eye. Stud-
ies have shown that using dermoscopy can improve the di-
agnostic accuracy of dermatologists by as much as 30% over
clinical examination [1]. This improvement in diagnostic ac-
curacy, however, is seen primarily when dermoscopy is used
by a trained expert. Consequently, there has been increasing
interest in computer-aided analysis of dermoscopy images.
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Automated detection and classification of indicative der-
moscopic features is a key step toward computer aided di-
agnosis. Previous work focused on specific types of dermo-
scopic features. Betta et al. [2] developed techniques to de-
tect and analyze atypical pigmented network and vascular pat-
terns. Grana et al. [3] detects curvilinear features to character-
ize network patterns. Tanaka er al. [4] applied texture analysis
techniques to classify three common global patterns typical to
melanocytic lesions. Iyatomi et al. [5] developed a procedure
to classify parallel furrow and ridge patterns that are charac-
teristic to melanocytic acral lesions. However, these methods
do not generalize to the large number of features typically
present in a dermoscopy dataset. A PSL typically has sev-
eral dermoscopic features, and there are over one hundred of
these features commonly seen in clinical studies. Upon close
examination, most of them share low level image characteris-
tics such as ridges, blobs, and streaks, yet each has a distinct
spatial configuration and concentration of them. In this paper,
we propose a feature detector designed to extract these low
level building blocks (a.k.a. dermoscopic interest points) and
a descriptor for constructing a general visual vocabulary for
dermoscopic features. To the best of our knowledge, this is
the first time the concept of interest points for dermoscopic
features is introduced.

These dermoscopic interest points (DIP) can be used in
various computer-aided PSL diagnosis applications. For in-
stance, we can use DIP as a general vocabulary for dermo-
scopic feature extraction, matching, and classification. To
detect DIP, candidate points are selected at distinctive loca-
tions such as corners, blobs, and streaks in the dermoscopy
image. For an interest point detector, repeatability is its most
important merit, i.e. whether it reliably finds the same interest
points under different viewing conditions, or within different
instances of the same type of lesion. Next, the neighborhood
of every interest point is represented by a feature vector, an
interest point descriptor. This representation not only has to
be distinctive, but also robust to noise as well as geometric
and photometric deformation. A number of detectors and de-
scriptors have already been introduced in the computer vi-
sion literature (e.g. [6, 7, 8]). Recent work in this area has
also proposed learning image descriptors from training sam-
ples [9, 10]. We have built our dermoscopic interest point
detector and descriptor on insights gained from this previous
work. The first issue for a local feature detector is the level of



invariance. The same feature can appear in different images
and undergo both geometric and photometric deformations.
Due to the imaging technique used, geometric deformations
are mostly restricted to a plane; therefore, we focus on scale
and rotation invariant detectors and descriptors.! We use a
linear model with a scale factor and offset to model photo-
metric deformations. Many existing interest point detectors
select distinctive locations from corners, blobs, and junctions
because of their robustness to various deformations. In der-
moscopy images, due to the common presence of curvilinear
features such as fibrillar pattern and radial streaming, we in-
clude locations where strong curvilinear features are present.
Moreover, unlike previous descriptors which discard color in-
formation, we introduce a color component in our descriptor
since color information is important for discriminating many
dermoscopic features in PSLs. We compare our feature detec-
tor and descriptor to some of the most popular interest point
detectors in computer vision. We demonstrate that DIP are
discriminative and reliable for dermoscopic features.

2. DETECTOR

We select interest points at distinctive locations in the der-
moscopy image, such as corners, blobs, junctions, and
streaks. We want our interest point detector to be repeat-
able, i.e. it should reliably find the same interest points under
different viewing conditions. In general, vision interest point
detectors such as SIFT [7] and SURF [8] focus on corners
and blobs because these image characteristics are robust to
various image transformations. This applies to dermoscopy
images as well; therefore, we start with detecting corners and
blob structures. In addition, many dermoscopic features, such
as the pigmented networks shown in Figure 2, have strong
curvilinear components. In order to capture those features,
we augment our detector with a component that specifically
locates curvilinear structures.

2.1. Corners and blobs

We adopt the fast-Hessian detector proposed in Bay, et al. [§8]
to locate corner and blob structures. Given a dermoscopy im-
age J, we first convert its pixels from RGB to L*a*b* values
since the CIELAB space is more perceptually uniform, and
the L channel roughly captures the luminous component of
the image. We use the determinant of the Hessian matrix for
selecting both the location and scale of each interest point.
Given a point & = (z,y) in the intensity channel L, the Hes-
sian matrix H(Z, o) in & at scale o is defined as follows
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I Deformations such as skew and anisotropic scaling are covered to some
degree by the overall robustness of the descriptor.

and L,,. The detector approximates second order Gaussian
derivatives with box filters (Fig. 1), denoted as Dy, D, and
D, which can be evaluated efficiently using integral images.
We use 9 x 9 box filters at the lowest scale 09 = 1.2. The
filter response is computed as det(Hqpproz) = DagzDyy —
(0.9D,,)?, where 0.9 is used to balance the relative weights
from the approximations. The responses are normalized with
respect to the mask size to guarantee a constant Frobenius
norm for any filter size. Scale space computation is also made
easy by the use of box filters and integral images. We build
each image layer, referred as s = o, by filtering the original
image with gradually increasing masks (e.g. 9 x 9, 15 x 15,
21 x 21) instead of iteratively downsampling the image. As
a result, the same integral image can be reused and the speed
is exactly the same for any filter size. The Gaussian deriva-
tives scale along with the filters. For example, the 27 x 27
filter corresponds to o = 3 X 09 = 3.6 = s. After applying
non-maximum suppression in a 3 X 3 x 3 neighbourhood of
the image layers, we interpolate the Hessian determinant in
both scale and image space. We then threshold the interpo-
lated maximum responses to exact candidate sites for corner

and blob structures.
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Fig. 1. Gaussian second order partial derivatives in z-, y-, and
xy-direction approximated using box filters. Grey is zero.

2.2. Curvilinear structures

To locate strong curvilinear components, we apply Steger’s
line point detection algorithm [11] to the intensity channel
L. Line points are points in an intensity image where the
first directional derivative in the direction of the line van-
ishes, and the second directional derivative has a large ab-
solute value. A point & = (x,y) is a line point if it satisfies
(tng,tny) € [-%, 31x[—3, 1], where (n,, n,) is the normal-
ized eigenvector” that corresponds to the maximum absolute
eigenvalue of the local Hessian matrix H(Z, o), and ¢ is eval-
uated as follows:
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where L, Ly, Lz, Lyy, Ly, are partial derivatives of the
image estimated by convolving the image with discrete two-
dimensional Gaussian partial derivative kernels. The standard
deviation o of these kernels is directly tied to the expected
line width. Therefore, we apply the line detection algorithm
at multiple scales (with different o’s) to extract line segments
within a certain width range. The saliency of a line point

2(ng, ny) points in the direction perpendicular to the line direction at
point (z,y).



(z,y), i.e. the absolute value of the second directional deriva-
tive along (ny,n,), is proportional to its intensity. We find
local maximum filter responses in both scale and image space
to locate strong curvilinear structures.

3. DESCRIPTOR

The distinctive power of state-of-the-art interest point de-
scriptors such as SIFT or SURF relies on a combination of
approximately spatially localized information and the distri-
bution of gradient-related features. Relative strengths and
orientations are often used instead of absolute ones to reduce
the effect of photometric changes. The proposed dermo-
scopic feature descriptor is based on similar properties, with
the addition of linear and color components. We first identify
a reproducible orientation based on local statistics calcu-
lated from a circular region around each interest point. We
then construct a square region aligned to this orientation and
extract a feature vector from it.

3.1. Orientation

Once the location of an interest point is determined, we iden-
tify a reproducible orientation in order to achieve rotation
invariance. We first compute the Haar-wavelet responses in
both z and y direction in a circular neighbourhood of radius
65 around the interest point, with s being the scale of the in-
terest point. The sampling step and the scale at which we
compute wavelet responses are chosen as s, so the wavelets
are large at high scales. Using the same integral images in-
troduced in the last section, only six operations are needed to
compute the wavelet response in both directions at any scale.
The resulting responses, after being weighted by a Gaussian,
are represented as vectors in a 2D space with the horizontal
and vertical response strength as coordinate axes. The domi-
nant orientation is estimated by summing up all the respective
horizontal and vertical responses in a sliding window cover-
ing an angle of % The two summed responses then yield a
new vector, and the orientation of the longest such vector is
chosen as the orientation of the interest point.

3.2. Descriptor components

Once a reproducible orientation is identified, we construct
a square region oriented along this direction, and centered
around the interest point. The size of the square is 20s and
it defines the context of our descriptor. After dividing the
context region uniformly into 4 x 4 sub-regions, we com-
pute four simple features at 5 x 5 regularly spaced sample
points for each sub-region. We use d, d, to denote the Haar
wavelet responses in horizontal and vertical directions (filter
size 2s). We also extract the absolute values of the responses,
denoted by |d,| and |d,|, to register the polarity of the inten-
sity changes. After summing up these individual measure-
ments within each sub-region, we obtain a four-dimensional
descriptor vector v with underlying intensity structure v =

(>-de, > dy, Y |dz|, > |dy]). Therefore, for each interest
point, the resulting descriptor vector is of length 64 for all
4 x4 sub-regions. The wavelet responses are already invariant
to illumination changes, and we can further achieve contrast
invariance by normalizing the descriptor into a unit vector.

Popular interest point descriptors, such as SIFT and
SUREF, only compute intensity statistics and discard color
information. However, color is an important diagnostic cue
in dermoscopy since most PSLs arise from pigmented skin
cells (melanocytes). The appearance of melanocytes, which
varies with depth, is vital to discriminating dermoscopic fea-
tures. For instance, black globules have an identical gradient
profile as the brown ones; however, they are very different
dermoscopic features, and it is important to distinguish them.
Accordingly, we include color statistics to augment our de-
scriptor. For each region surrounding an interest point, we
compute a coarse color histogram (6 bins in dimension) in
the a and 3 channels of the L*a*b* representation of the
image. The resulting vector is of length 36, and it captures
the color distribution of the region. After normalization, this
color component is concatenated to the intensity component
to form a DIP descriptor in R1%°,

4. VALIDATION AND RESULTS

We evaluate our representations on a dataset of 150 der-
moscopy images containing common PSLs. At least one
dermoscopic feature is present within each lesion boundary.
The features are outlined and annotated by our collaborating
dermatologists. For the detectors and descriptors used in
comparison, SURF is based on the original implementation
of the authors, and SIFT is from a relatively efficient imple-
mentation [12] based on the original publication. We first
compare how sensitive these detectors are to dermoscopic
features. We then check their repeatability on dermoscopy
images undergoing common transformations.

For each image, all the detector responses within the le-
sion boundary are retrieved. Those points that land inside der-
matologists’ manual feature outlines are considered relevant.
The starting threshold for each detector is set to a level low
enough to generate a large number of responses. These re-
sponses at the lowest threshold are used as the relevant feature
set for each detector. As we gradually increase the threshold,
fewer responses are produced. We plot the precision-recall
graph in Figure 3(a). Our experiment shows that the DIP de-
tector consistently outperformed both the SURF and SIFT de-
tector on dermoscopy images. Figure 2 shows an illustrative
comparison between SURF and DIP detection results. The
lesion in the images exhibits a common dermoscopy feature
called pigmented networks. There are only a few corners and
blobs strong enough to trigger SURF detector responses, and
the majority of the interesting feature region is overlooked.?

3Similar results are observed when the SIFT detector is used. The image
is not shown due to space limitation.



Fig. 2. Interest points detected by the SURF (left) and DIP
(right) detectors.

Under similar settings, the DIP detector captures more inter-
est points on the same lesion. This is true in general, and
according to the precision-recall graph, a higher percentage
of these DIP responses are relevant to dermoscopic features.

An effective interest point detector and descriptor should
reliably find the same interest points under different viewing
conditions. For example, reliable feature correspondences
are needed in applications such as lesion registration and
change detection for longitudinal studies. To demonstrate the
repeatability of the DIP detector and descriptor, we set up the
following experiment. We perform a set of scale, rotation,
and lighting change operations on each image. The detector
responses at each location before and after the change are
matched; any inconsistency indicates a miss detection. When
both responses are present (within a three pixel radius), we
calculate the Euclidean distance between their descriptor vec-
tors. If this distance is larger than a preset threshold, we
consider the pair as a miss match. Figure 3(b), 3(c), and 3(d)
shows the repeatability comparison results for decreasing
light, scale, and rotation change, respectively. Although un-
der similar settings, the DIP detector often extracts more
interest points than SIFT and SUREF, and the additional color
components in its descriptor can increase matching difficul-
ties, its repeatability, as evidenced in the graph, is on par with
SUREF, and slightly superior to SIFT. All the experiments
were performed on a standard Windows PC (Pentium D, 3.20
GHz).

5. CONCLUSION

We presented a novel scale- and rotation-invariant feature
detector and descriptor specifically designed for dermo-
scopic features. We have demonstrated that our detection-
description scheme is more effective in retrieving dermo-
scopic interest points while achieving a comparable level
of invariance to lighting, scale, and rotation changes when
measured against the popular SIFT and SURF detectors and
descriptors.
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