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ABSTRACT
Dermoscopy is a technique used to better visualize pigmented
skin lesion and aid the clinician in determining if a lesion
is benign or malignant. Automated segmentation of der-
moscopy images is an important step for computer-aided
diagnosis of melanoma. In this paper, we investigate how
to use the spatial constraints present in pigmented lesions
to improve the segmentation of dermoscopy images. We
present an unsupervised segmentation algorithm that embeds
these constraints into the feature space. The algorithm groups
image pixels with homogeneous properties, and merges the
pixel groups into a few super-regions. The optimal lesion-
skin boundary is chosen from the set of all region boundaries,
where the optimality is determined from the color and tex-
ture properties of the regions. We test our method on 67
dermoscopy images and compare the automatically gener-
ated segmentation with dermatologist-determined segmenta-
tion. The results demonstrate the advantage of incorporating
domain-specific constraints into the segmentation process.

Index Terms— Computer-Assisted Image Interpretation,
Dermoscopy, Segmentation, Pigmented Skin Lesion, Coordi-
nate system,

1. INTRODUCTION

Skin cancer is the most common form of malignancy in hu-
mans, and melanoma is the leading cause of mortality among
all forms of skin cancer. The incidence of melanoma is in-
creasing at a rate greater than any other form of cancer in
the United States [1]. However, if caught in early stage,
melanoma can often be cured with a simple excision. There-
fore, early detection of malignant melanoma significantly
reduces mortality. Dermoscopy is a noninvasive imaging
technique that has been shown to be effective for such a
purpose. The procedure requires an incident light magni-
fication system and a liquid contact medium applied at the
skin-microscope interface. This allows the incident light to
penetrate the top layer of the skin tissue and permits a de-
tailed examination of the pigmented structures beyond what
would be visible to the naked eye. Studies have shown that
dermoscopy can improve the diagnostic accuracy of derma-
tologists by as much as 30% over clinical examination [1].
This improvement in diagnostic accuracy, however, is seen
primarily when dermoscopy is used by a trained expert, or

when the user applies specific diagnostic algorithms that are
often not practical in the clinical setting. Based on this, there
has been increasing interest in computer aided analysis of
dermoscopy images. The first step of such analysis is the seg-
mentation of pigmented lesions from the surrounding skin.
The resulting border structure not only provides a basis for
calculation of important clinical features such as lesion size
and border irregularity, but it is also crucial for extraction of
discriminating dermoscopic features such as atypical pigment
networks and radial streaming. A number of algorithms have
been developed for automated segmentation of pigmented
skin lesions. Many had roots in image processing and com-
puter vision techniques such as the PDE approach [2], his-
togram thresholding [3], clustering [4], and statistical region
merging [5]. Researchers have also explored different color
spaces, e.g., RGB, HSI, CIELUV [4], and CIELAB to improve
segmentation performance. However, due to the large vari-
ability in lesion properties and skin conditions, along with the
presence of artifacts such as hair and air bubbles, automated
segmentation of pigmented lesions in dermoscopy images
remains a challenge. Due to space limit, we refer readers to
[5] for an extensive list of border detection algorithms.

In this paper, we focus on the spatial constraints univer-
sally present in dermoscopy images, which arise from the
growth pattern of pigmented lesions. We show that by embed-
ding such domain knowledge into the feature space, the per-
formance of automated segmentation algorithms can be im-
proved. Our algorithm starts with a two-stage clustering and
region merge process. Once homogeneous regions are iden-
tified, it determines an optimal boundary based on a measure
that integrates both color and texture properties. We test our
method on 67 dermoscopy images. The automatically gener-
ated borders are compared with those determined by an expe-
rienced dermatologist. The results demonstrate that segmen-
tation performance is improved by incorporating these spatial
constraints.

2. SPATIAL REPRESENTATION OF LESIONS

2.1. The growth pattern of pigmented lesions

Melanoma arises from pigmented skin cells (melanocytes)
and is commonly identified with two growth phases, radial
and vertical. In the radial growth phase, both melanoma and



benign pigmented lesions appear as plaques. Lesions increase
in depth and carry a less favorable prognosis when they enter
the vertical growth phase (see Fig. 1(a)). Since skin absorbs
and scatters light, the appearance of melanocytes varies with
depth. As a result, melanocytes are dark brown within the
epidermis, tan at or near the dermoepidermal junction, and
blue-gray in the dermis. This gives pigmented lesions a com-
mon radiating growth pattern seen from skin surface. That is
in general, the difference in lesion appearance is more signifi-
cant along the radial direction from the lesion center than any
other direction, as shown in Fig. 1(b). Notice that the skin
patch in the cyan square bears more resemblance to the patch
in the red square than the yellow one, even though the yellow
square is much closer to the cyan square.

(a) Melanoma growth. (b) Radiating pattern.

Fig. 1. The growth pattern of pigmented skin lesion (a) and
its radiating appearance (b) (Image courtesy of Med-Art).

2.2. Using polar radius

Many algorithms enforce explicit spatial constraints to sim-
plify the figure/ground label assignment. Melli et al. [6] as-
sume that the pixels at the four corners of an image belong to
skin. Celebi et al. [5] discard the rectangular regions touching
the image frame. Moreover, some methods such as the mean-
shift algorithm implicitly enforces local neighborhood con-
straints on image Cartesian coordinates during pixel group-
ing. However, because pigmented lesions have a radiating
appearance, direct embedding of Cartesian coordinates may
not be optimal. For example, in Cartesian coordinates, the red
square in Fig. 1(b) is farther away from the cyan square than
the yellow one. Consequently, it is less likely to be grouped
together with the cyan square, even though their underlying
melanocytes are probably in the same growth period. Given
the fact that dermatologists tend to put the lesion near the cen-
ter of image frame while acquiring dermoscopy images, we
can better capture the radial growth pattern by replacing the
x, y coordinates with a polar radius r measured from the im-
age center.

We verify this by comparing the clustering residue errors
using both coordinate systems. The feature space includes the
coordinates of each pixel, (x, y) in Cartesian and r in polar,
and its RGB values. We apply k-means [7] clustering on both
representations of the image. After clustering, we generate

a filtered image by substituting the RGB values of each pixel
with its cluster mean. The mean per-pixel residue between
each original and filtered pair is then calculated. We apply this
operation on our dermoscopy dataset (Derm), which consists
of 216 lesion images, as well as on the Berkeley natural image
dataset (BSD) [8], which has 300 images of randomly selected
natural scenes

Fig. 2 shows that for Dermoscopy images in Derm, the
mean residue is reduced by 18% switching from Cartesian
to polar coordinates. In contrast, the difference is much less
for the natural images in BSD. Moreover, in the Derm data,
all but two data points have smaller residue error under po-
lar system, whereas for the BSD, the data points are being
spread more uniformly across the equal performance line. We
will describe our segmentation algorithm in the next section
and demonstrate how the embedding of spatial constraints im-
proves segmentation performance.

Fig. 2. Mean per-pixel residue comparison between polar and
Cartesian representation on the Derm dataset (left) and BSD
dataset (right).

3. SEGMENTATION ALGORITHM

Our algorithm identifies large regions with homogeneous
properties (super-regions) through a two-stage clustering.
The lesion-skin boundary is then chosen as the optimal
boundary among all possible boundaries of these regions.
We use a measure that integrates both color and texture prop-
erties to determine the optimum.

3.1. Two-stage Clustering

The first clustering stage serves two purposes. First, it re-
moves small variations in appearance due to noise. Second,
it groups pixels into homogenous regions; the color and lo-
cation values of each pixel are replaced with the average val-
ues of the region to which they belong. The regions resulting
from this operation give us a more compact representation
of the original image. We use the k-means++ algorithm [7].
It is a variation of the k-means algorithm that improves both
speed and accuracy by using a randomized seeding technique.
The input to k-means++ is all the image pixels represented as



points in R4, where the coordinates of each point encodes the
color and location of the corresponding pixel. We convert
the pixels from RGB to L*a*b* values because the CIELAB
space is more perceptually uniform. The fourth coordinate
is the polar radius measured from the image center encoding
the location of each pixel. We normalize this coordinate with
a constant w to make the polar radius commensurate with the
L*a*b* color values. We chose the number of clusters k as
30 such that the clusters are able to represent the image com-
pactly without incurring large residue errors [6].

This first round of clustering serves the same noise-
reducing purpose as the median filtering used in [4] and [5],
but avoids boundary localization errors introduced by the
smoothing process.

Figs. 4(a) and 4(b) show the original and the filtered im-
ages after clustering, respectively. For comparison purposes,
we perform the same clustering procedure on points repre-
sented by their L*a*b* values and Cartesian coordinates. As
shown in Fig. 4(c), the regions appear more blocky when the
clustering is performed in Cartesian space. This unnatural ap-
pearance is not present when polar radius is used (Fig. 4(b)).

After the first stage of clustering, the mean values of the
clusters are fed into the next round of k-means++ clustering
to produce super-regions, as defined previously. We choose
the number of clusters k by satisfying the following two re-
quirements. First, it must account for intra-skin and intra-
lesion variations. For example, the appearance of the lesion
in Fig. 4(a) varies significantly across lesion, and an attempt
to produce a single lesion cluster is unlikely to succeed. Sec-
ond, we want to avoid a value that is too large making the
subsequent combinatoric region merge (see next section) in-
tractable. Based on our experiments and previous studies [6],
we set k to 6, which produces satisfactory results. As shown
in Figs. 4(d), 4(h), 4(f), and 4(j), the super-regions do corre-
spond to meaningful regions such as skin, skin-lesion transi-
tion, and inner lesion.

3.2. Color and texture cue integration

After the super-regions are identified, we apply a region
merge procedure to produce a plausible lesion segmentation.
However, for many cases merging based on color cues alone
is insufficient. For instance, on severely sun damaged skin
(Fig. 4(i)), texture variations are often more informative than
color. Moreover, many lesions exhibit texture variations at
boundaries in addition to color variations. For these cases,
incorporating texture information can improve segmentation
performance.

In order to measure the amount of texture variations
across regions, we apply the texture gradient filter (TG) [8]
to the original dermoscopy images. The resulting images are
pseudo-likelihood maps, which contain the information of
how likely an edge caused by texture variation is at a certain
location. By considering both the super-regions and the likeli-

hood map, we determine the optimal skin-lesion boundary as
follows. We uniformly sample the original values of the pix-
els within each super-region and compute an Earth Mover’s
Distance (EMD) [9] between every pair of super-regions.

For a particular lesion Ω the optimal skin-lesion boundary
δΩ is the curve that separates the set of super-regions inside
Ω from the rest. The optimal Ω̂ is found by minimizing the
integrated color-texture measure as follows:

Ω̂ = arg min
Ω

(
1
K

∑
∀Sk,Sl∈Ω

Ck,l +
1
M

∑
∀Sm,Sn /∈Ω

Cm,n − λTδΩ),

where Si and Sj (i, j = k, l,m, n ∈ {1, 2, . . . , 6}) are a pair
of super-regions, Ci,j is the EMD between them, K,M nor-
malize the sums, and T is the normalized texture gradient on
the lesion boundary δΩ. λ is a constant that can be adjusted
to put emphasis on either color or texture.

4. VALIDATION AND RESULTS

We have our collaborating dermatologist manually outline the
lesions in 67 dermoscopy images, and treat that as ground-
truth. We compare them to the automatically generated bor-
ders using the grading system in [5]. The border error is given
by

error =
Area(computer XOR ground-truth)

Area(ground-truth)
× 100%,

where computer is the binary image obtained by filling the au-
tomatic detected border and ground-truth is obtained by fill-
ing in the boundaries outlined by our dermatologist.

Fig. 3 shows a performance comparison using this error
measure. We can see that while both colorspace conversion
(from RGB to L*a*b*) and color-texture integration improved
segmentation accuracy, the biggest boost came from embed-
ding the spatial constraints during clustering.

Typical segmentation results are shown in Fig. 4(d) - 4(k).
The first image of each pair shows the super-regions while the
second one shows the lesions. Both the computer generated
borders (in blue) and the dermatologist’s (in white) are over-
layed on top of the original images for comparison purposes.

5. CONCLUSION

In this paper, we show that the growth pattern of pigmented
skin lesions can be utilized to improve lesion segmentation
accuracy in dermoscopy images. We present an unsuper-
vised segmentation algorithm incorporating these spatial
constraints, and we demonstrate its efficacy by comparing
the segmentation results to ground-truth segmentations deter-
mined by an expert.



(a) Error = 12.96% (b) (c)

(d) (e) Error = 5.80% (f) (g) Error = 13.61%

(h) (i) Error = 16.60% (j) (k) Error = 34.09%

Fig. 4. Segmentation results. (a) Original dermoscopy image. (b) Image filtered using polar radius (k = 30, w = 0.11). (c)
Image filtered using Cartesian coordinates (k = 30, w = 0.08). (d)-(k) Typical segmentation results. The boundaries in blue
are generated by our algorithm, and those in white are from the dermatologist.

Fig. 3. Comparison of results.
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